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Evaluation of Micro-Pillar
Compression Tests for Accurate
Determination of Elastic-Plastic
Constitutive Relations
The micro-pillar compression test is emerging as a novel way to measure the mechanical
properties of materials. In this paper, we systematically conducted finite element analysis
to evaluate the capability of using a micro-compression test to probe the mechanical
properties of both elastic and plastic materials. We found that this test can provide an al-
ternative way to accurately and robustly measure strain, and to some extent, stress.
Therefore, this test can be used to measure some strain related quantities, such as strain
to failure, or the stress-strain relations for plastic materials. [DOI: 10.1115/1.4006767]
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1 Introduction

Understanding deformation behavior of materials requires
knowledge of the local stress-strain behavior of individual micro-
structural phases and constituents. For example, the deformation
behavior of dual phase steels is controlled by the martensite con-
stituent and ferrite. In Sn-rich alloys used in electronic packaging,
the mechanical properties of Cu6Sn5 intermetallic, Sn-Ag3Sn
eutectic, and pure Sn dendrites need to be measured. Such meas-
urements cannot be made by making these materials in bulk form,
because the microstructure, texture, and density of defects may
change.

Quantifying the stress-strain behavior of small volumes is a
challenge. Indentation techniques have been developed that ena-
ble the measurement of Young’s modulus and hardness. Cur-
rently, the nanoindentation technique can achieve subnanometer
displacement resolution and 1 nano-Newton force resolution,
which makes the technique widely used to determine mechanical
properties of small volumes [1]. Despite the popularity of the in-
dentation test, it still has some intrinsic shortcomings. The main
problem is that indentation involves a complex stress/strain field
underneath the indenter depending on the specific tip geometry.
Furthermore, extraction of uniaxial stress-strain constitutive rela-
tions, while possible, require complex iterative methods [1].

Recently, a variant on nanoindentation, called micropillar com-
pression, has been developed. The technique uses a nanoindenter
with a flat punch to compress a small cylindrical volume (1 lm di-
ameter by 2 lm length cylinders) to obtain a uniaxial stress-strain
behavior (Fig. 1(a)). Micropillars are machined by milling materi-
als of interest using focused ion beam (FIB) (Fig. 1(b)) with diam-
eters ranging from 200 nm to a few lm [2] within a single phase
of the constituent. Figure 1(c) shows a pillar of Cu6Sn5 intermetal-

lic milled by FIB [3]. Various materials have been tested by this
technique, including Mg, Ta, and Cu6Sn5 [3–6]; other studies
have focused on simulations based on crystal plasticity [7] and
dislocation dynamics [8].

Compared with the micro-indentation test, micro-compression
has the obvious advantage of a relatively uniform stress/strain
field. However, since micro-compression test is a new technology
to measure the strain-strain relation, there is no standard yet.
Moreover, there are several experimental variables, however, that
may affect accurate measurements of strain and stress. These vari-
ables include the aspect ratio a (the ratio of height h and diameter
d of the pillar), size of substrate below the pillar, taper angle h
(>0) (the angle between the tangent of wall and axis of the pillar),
fillet angle, misalignment between the pillar axis and the compres-
sion direction, and stiffness of the substrate. It also must be real-
ized that the presence of the substrate leads this problem to
become complicated and many straightforward analytical analyses
cannot be simply applied.

The effect of some of these variables can be intuitively under-
stood. For example, for a compliant substrate, the pillar will sink
upon compression and the majority of the deformation will be car-
ried by the substrate instead of the pillar, which will lead to inac-
curate measurement of the pillar deformation. This sink-in effect
may be magnified for pillars with a large aspect ratio and sup-
pressed for pillars with a large taper angle. A larger aspect ratio
may also lead to premature buckling of the pillars upon compres-
sion. This intuitive argument indicates that these factors may be
coupled together to influence the accuracy of the experimental
measurement. Zhang et al. [4] used the finite element method to
study some of these effects, including aspect ratio, fillet angle,
taper angle and misalignment for a pillar on a very thin substrate
sitting on a rigid base.

In this paper, we have conducted systematic and parametric fi-
nite element analysis to evaluate the micro-compression test from
several aspects, and propose methods to accurately calculate stress
and strain with good correlation with experimentally measureable
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quantities. The structure of the paper is as follows. We present
our finite element model in Sec. 2 followed by a methodology
on how the strain was measured in the micropillar. The deforma-
tions of the indenter, micro-pillar, and substrate are coupled to-
gether, so the purpose of the work presented in Sec. 3 is on a

methodology on how to eliminate the influences of deformation
of the substrate and indenter in the strain measurement. In Sec. 4,
we considered factors that affect the micro-pillar stress measure-
ment. The shape of the micro-pillar will cause a nonuniform stress
field, which will make the stress calculation more difficult. The
taper angle and aspect ratio effects are specifically evaluated in
Sec. 4.

2 Finite Element Model

We have used an axisymmetric geometry to model the micro-
compression test, as shown in Fig. 2(a). An indenter with radius,
rindenter, is included, although its deformation maybe very small,
and modeled as an elastic material. rtop is the top radius of the pil-
lar, h is the taper angle, and h is the height of the pillar. The
dimension of the substrate is L� L. Figure 2(a) is not drawn to
scale since the size of the substrate is about two orders of magni-
tude greater than that of the pillar. The pillar and substrate are the
same material and can be elastic or plastic. The interface between
the pillar and substrate is realized by sharing nodes. The pre-
scribed displacement boundary condition v¼ 0 is applied at the
bottom of the substrate to model the rigid base underneath the
substrate. The axisymmetric boundary condition u¼ 0 is applied
along the symmetric axis. Here u and v represent the displace-
ments along the x and y directions, respectively. The surface-to-
surface contact is assigned between the indenter and the top of the
pillar and a prescribed pressure load p is applied on top of the in-
denter, so the axial compressive force is f ¼ pr2

indenterp. The finite
element analysis is conducted via the commercial finite element
package ABAQUS/Standard (version 6.9). Axisymmetric 4-node
continuum elements (CAX4) and 3-node elements (CAX3) are
chosen for discretization. Mesh sensitivity is studied by reaching a
convergent load/displacement curve extracted from the pillar
region. A typical convergent mesh with about 200,000 elements is
shown in Fig. 2(b), with the inset of the pillar region.

The range of geometric parameters used in the analyses are
as follows: rindenter ¼ 1 lm, rtop ¼ 0:5 lm, h ¼ 0 � 5 deg,
a ¼ h=2rtop ¼ 2 � 4, L ¼ 10 � 70 lm. The elastic materials used
for the pillars have Poisson’s ratio 0.3 and Young’s modulus rang-
ing from 50 GPa to 400 GPa. The plastic material used here is that
of a Sn-rich alloy with 3.5 wt.% Ag with Young’s modulus
45.6 GPa, Poisson’s ratio 0.3, and the experimentally determined
stress-strain curve via tensile test for the plastic zone shown in
Fig. 2(c).

3 Measurement of Pillar Strain

3.1 Indentation Depth and Sneddon’s Correction. In this
section, we discuss the measurement of pillar strain in the micro-
compression test. It should be noted that the pillar strain cannot be
directly measured in the micro-compression experiment. Instead,
the measurable variable is the indentation depth, i.e., the displace-
ment of the top surface of the indenter with respect to the rigid
base underneath the substrate. In other words, the total displace-
ment of the system, including indenter, pillar and substrate, is the
directly measurable quantity, which is given by

Dxtotal ¼ Dxind þ Dxpillar þ Dxsub (1)

where Dxtotal is the indentation depth, Dx is the deformation of
each part in the micro-compression test with subscripts “ind,”
“pillar,” and “sub” denoting indenter, pillar, and substrate, respec-
tively. The pillar deformation Dxpillar is the quantity of interest,
which needs to be accurately quantified by eliminating the defor-
mations of indenter and substrate from the total displacement.

The deformation of the pillar into the substrate can be described
by the work of Sneddon [9]. Sneddon [5] considered the sinking
effect of a cylindrical punch indenting into an elastic half space,

Fig. 1 (a) Schematic of the micro-pillar compression test, (b)
schematic of focused ion beam (FIB), and (c) scanning electron
microscopy (SEM) image of a micro-pillar on a single grain of
Sn-Ag-Cu (SAC) alloy, with a taper angle of �4 deg
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and developed an analytical formula to calculate the compliance
associated with the deformation of the half space material, which
is given by

CSneddon ¼
ð1� v2Þ

ffiffiffi
p
p

2E
ffiffiffiffiffi
Ap

p (2)

where CSneddon is the compliance of the half-space material, E is
the Young’s modulus, � is the Poisson’s ratio, and Ap is the
contact area between the punch and the half-space material.
Equation (2) can be applied to the micro-compression test by
assuming the punch to be the pillar and the half-space material to
be either the indenter and/or substrate. Thus, the deformations of
indenter and substrate are given in terms of their compliance by
considering the system as series springs consisting of the indenter,
pillar, and substrate,

Dxind ¼ Cindf ; Dxsub ¼ Csubf (3)

where f ¼ pr2
indenterp is the applied force on top of indenter and p

is the pressure. The pillar deformation then can be given by
[3,6,10]

Dxpillar ¼ Dxtotal �
ð1� v2

subÞ � f
2Esub � rbase

� ð1� v2
indÞ � f

2Eind � rtop

(4)

where, rtop and rbase are the radius of the top and base surface of
the pillar, respectively (Fig. 2(a)). A typical indenter used in the
micro-compression test is made of diamond with Young’s modu-
lus of 1141 GPa and Poisson’s ratio of 0.07 [9]. The substrate is
normally the same material as the pillar. Although Sneddon’s cor-
rection has been applied to the micro-compression tests (See, for
example, Ref. [3]), its accuracy has not yet been evaluated since
the assumptions in Sneddon’s correction, e.g., half-space elastic
material as the substrate, may not hold in micro-compression tests.
The finite element analysis was conducted to evaluate the accu-
racy of Sneddon’s correction in micro-compression tests.

In finite element analysis, the total displacement Dxtotal is the
displacement in the y-direction measured from to the top of the in-
denter to the bottom of the substrate (i.e., rigid-body support);
Dxind is the difference in the y-direction displacement from the top
to the bottom surfaces of the indenter; Dxpillar is the displacement
of the top surface of the pillar with respect to the bottom surface
of the pillar, and Dxsub is the deformation of the substrate. To dif-
ferentiate from the Sneddon’s correction, Dxpillar in Eq. (4) is
denoted as DxSneddon

pillar in the following. The contribution of each
component to the total displacement is expressed by the deforma-
tion ratio given by

pillar% ¼ Dxpillar

Dxtotal

substrate% ¼ Dxsub

Dxtotal

indenter% ¼ Dxind

Dxtotal

(5)

and

Sneddon% ¼
DxSneddon

pillar

Dxtotal

(6)

It should be noted that, here, we do not intend to compare with
experiments but to evaluate the accuracy of the Sneddon’s correc-
tion; therefore, all displacement components (i.e., Dxind, Dxsub,
Dxpillar, and Dxtotal) are calculated from the finite element analysis
and DxSneddon

pillar is then computed based on Eq. (4).
The finite element model has a pillar with 3 lm in height and

0.5 lm in top radius as well as a large substrate with size of
50 lm� 50 lm. Figure 3(a) shows the deformation ratios for an
elastic material with Young’s modulus E¼ 50 GPa and Poisson’s
ratio �¼ 0.3. It is found that the pillar deformation contributes
around 80% to the total displacement (i.e., indentation depth) and
the substrate deformation is close to 20% of the total displace-
ment. The substrate deformation, which is also referred to as pillar
“sink-in,” causes the error in deformation measurement. With the
increase of the pressure applied on the indenter, these deformation

Fig. 2 (a) Schematic of axisymmetric model of the micro-pillar,
(b) geometry and mesh of the finite element model, and (c) the
stress-strain curve for the plastic material used in this study
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ratios for elastic materials remain constant as the system is linear
and the deformations of all components increase proportionally
with their relative ratios unchanged. It is also observed that the
Sneddon’s correction agrees fairly well with the finite element
analysis, which suggests that Sneddon’s correction can signifi-
cantly reduce the error caused by pillar “sink-in”.

Figure 3(b) shows a similar trend for the plastic material with
constitutive model given by Fig. 2(c). The contribution from the
indenter is negligible and the Sneddon’s correction captures the
trend of pillar deformation. Compared with the results for the elas-
tic material, the deformation ratios for the plastic material are not
constant. Specifically, with the increase of the applied pressure,
the pillar displacement contribution increases while that for the
substrate decreases. This can be explained by the total deforma-
tion being controlled by the equivalent plastic strain (PEEQ) in
the pillar, as shown in Fig. 3(c). As the applied pressure increases
from 1 MPa (left panel) to 7 MPa (right panel), the plastic zone in
the pillar is enlarged significantly compared with that of the sub-
strate. Therefore, the substrate carries less deformation as the
pressure increases, which explains the decreasing trend of the sub-
strate contribution as the pressure increases shown in Fig. 3(b).

The studies in this subsection show that Sneddon’s correction is
able to capture the pillar deformation for both elastic and plastic
materials, though its accuracy is quantified further in the next
subsections.

3.2 Accuracy of Sneddon’s Correction. The accuracy of
Sneddon’s correction can be more precisely evaluated by the mea-
surement of strain. The strain in the pillar, based on Sneddon’s
correction, is given by

eSneddon
pillar ¼

DxSneddon
pillar

h
(7)

In the finite element analysis, we can measure the actual displace-
ment of the pillar, so the strain is just given by

epillar ¼
Dxpillar

h
(8)

We can then define the error in strain e as

e ¼ eSneddon
pillar � epillar

��� ��� (9)

In other words, epillar based on the finite element analysis can be
considered the “reference strain” so the error in strain is simply
the deviation of the Sneddon’s correction from the reference
strain.

Figure 4(a) shows the deviation in strain, e, as a function of
applied pressure on the diamond indenter for elastic pillars (and
substrates). In these studies, the height of the pillar is 3 lm, and
the radius is 0.5 lm with taper angle of 0 deg. The size of the sub-
strate is 50 lm by 50 lm and the diamond indenter is 1.0 lm in
both radius and height. Four elastic materials are studied, with
Young’s modulus ranging from 50 GPa to 400 GPa and Poisson’s
ratio 0.3. Figure 4(a) shows that the strain error e increases line-
arly with the applied pressure. Materials with higher Young’s
modulus have relatively smaller strain error. All strain errors are
on the order of 10�5, i.e., the strain error is very small. This result
clearly shows that Sneddon’s correction provides a very accurate
estimation of the pillar strain for elastic materials.

One should note that although the strain errors are negligible
(on the order of 10�5), the relative strain error may not be that
small since the strain for the elastic materials are usually very
small (on the order of 10�4 to 10�3). The relative strain error is
defined as

g ¼
eSneddon

pillar � epillar

epillar

�����
����� (10)

Fig. 3 The deformation percentage of pillar, substrate, and in-
denter for (a) elastic and (b) plastic materials. For elastic mate-
rial, Young’s modulus E 5 50 GPa and Poisson’s ratio m 5 0.3.
For plastic material, the stress-strain curve is given by Fig. 2(c).
(c) Contours of equivalent plastic strain for a pillar subject to
different pressure on top of the indenter (not shown here). The
pressures are 1 MPa and 7 MPa for the left and right panels,
respectively. The geometry of the micro-pillar compression in
this figure is that the pillar is 3 lm in height and 0.5 lm in radius
on a 50 lm 3 50 lm substrate.
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and also shown in Fig. 4(a). As one can expect, the relative strain
error is on the order of 1%, which is three orders of magnitude
larger than the strain error. Moreover, the relative strain error for
materials with higher Young’s modulus is surprisingly larger than
that for materials with lower Young’s modulus, which is opposite
to the trend of strain errors. The explanation is related to one of
the assumptions in Sneddon’s correction, namely, the half-space

substrate. The half-space substrate is always valid for the current
pillar/substrate structure since the size of substrate is one order of
magnitude larger than that of the pillar, but may not be applied to
pillar/indenter. For pillars with relatively low modulus (e.g.,
50 GPa) compared with the diamond indenter with modulus
1141 GPa, the half-space assumption is valid. However, 1 lm-high
diamond indenter cannot be considered as a half-space substrate for
pillars with higher modulus, such as 400 GPa. To verify the above
explanation, we also show the strain errors and relative strain errors
when the pressure is directly applied on the pillars, e.g., removing
the effect the indenter, in Fig. 4(b). Clearly, the strain errors are
about the same as that in Fig. 4(a), but the relative strain errors do
not show significant difference for pillars with different modulus.

Figure 4(c) shows the strain errors and relative strain errors for
a plastic material with the stress-strain curve given in Fig. 2(c).
The strain errors are also very small, on the order of 10� 5. A dif-
ferent trend on relative strain error is observed, which varies from
2% to 10% for plastic materials, while for elastic materials it is a
constant (Fig. 4(a)). The explanation is that the contribution of the
deformation of the substrate deformation to the total deformation
decreases with an increase in pressure due to large amount of plas-
tic deformation in the pillar, as discussed in Fig. 3(b).

The above study leads us to conclude that the Sneddon’s correc-
tion can provide a very accurate measurement on the pillar strain,
particularly when the pillar materials are much softer than the in-
denter or the pillar is much smaller in volume relative to the
indenter.

3.3 Substrate Effect. The previous results, specifically Figs.
3(a), 3(b), and 4, show that the deformation of the indenter is neg-
ligible and has very small effects on the accuracy of the measure-
ment of strain in the pillar. We can hypothesize, then, that the
deformation of the substrate can introduce significant errors in
strain measurement. In this section, we evaluate the effect of the
substrate on deformation behavior of the pillar. In the ideal sce-
nario, i.e., where pillar rests on top of a rigid base, there is no
“sink-in effect.”

To quantify how the substrate size affects the strain measure-
ment, substrates with various sizes, ranging from 10 lm� 10 lm
to 70 lm� 70 lm, are considered. A pillar with 3 lm in height,
0.5 lm in radius and 0 deg in taper angle is used. Figure 5(a)
shows the results for an elastic material with Young’s modulus 50
GPa and Poisson’s ratio 0.3. For a substrate with smaller size; for
example, 10 lm� 10 lm (i.e., the leftmost point in Fig. 5(a)), the
strain error is smaller compared with that for substrates with
larger size. As the size of the substrate increases, the strain error
reaches a plateau, which also is reasonably small (on the order of
10� 4). One of the assumptions in the Sneddon’s correction,
namely half-space substrate, is responsible for the convergence of
the strain error as the size of the substrate increases. This study
indicates that for elastic materials, the substrate effect is negligi-
ble. It is not necessary to devote efforts to eliminate the substrate
in order to get better strain measurement. Even if the substrate is
large, the error from the Sneddon’s correction converges to a reason-
ably small level (on the order of 10� 4). Figure 5(b) shows the sub-
strate effect for plastic materials. The material model is given by Fig.
2(c) and the same geometry in Fig. 5(a) is used. A similar trend is
observed, i.e., the strain errors converge to a very small value.

The studies in this subsection conclude that the Sneddon’s cor-
rection can provide very accurate strain measurement no matter
the size of the substrate and the material type.

3.4 Aspect Ratio and Taper Angle Effect. In this section,
the influence of a pillar shape, namely, aspect ratio and taper
angle, on the strain measurement is described.

The aspect ratio is defined as

a ¼ h

2rtop

(11)

Fig. 4 Indenter effect on the strain measurement. Strain error
and relative strain errors of elastic pillars when the pressure is
applied on (a) a diamond intender, and (b) a rigid indenter. (c)
Strain errors and relative strain errors for a plastic material with
stress-strain curve given by Fig. 2(c) as input.

Journal of Applied Mechanics NOVEMBER 2012, Vol. 79 / 061011-5

Downloaded 26 Dec 2012 to 129.219.247.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Oftentimes, the pillar radius is fixed due to the resolution of
micro-machining, such that the aspect ratio can be controlled
by changing the pillar height. In the following finite element
analysis, a pillar with rtop ¼ 0:5 lm and 0 deg taper angle and a
50 lm� 50 lm substrate (a larger enough substrate having con-
vergent results from Fig. 5) is used. The aspect ratio is varied from
2 to 4, which corresponds to a pillar with height from 2 to 4 lm.
These parameters agree well with the present experiments. Figure
6(a) shows the results for an elastic material with E¼ 50 GPa,
�¼ 0.3, and Fig. 6(b) gives the results for a plastic material with
constitutive relation shown in Fig. 2(c). These results illustrate
that the aspect ratio does not play an important role on the accu-
racy of the strain measurement using the Sneddon’s correction,
since the strain errors are insignificant. This trend can be explained
in the following. When the pillar radius is fixed, there are only two
length-dimension parameters, pillar height h and substrate dimen-
sion L, the ratio of which is a nondimensional parameter, h/L. This
parameter is similar to the signal-to-noise ratio since the pillar is
of our interest and the effect of substrate should be eliminated.
High aspect ratio, or taller pillar, will provide “stronger signal”
and just leads to smaller strain errors.

In addition to the aspect ratio, another parameter used to
describe a pillar is its taper angle h (Fig. 2(a)). An ideal micro-

pillar is perfectly straight, although a slight taper angle exists for
most micro-pillars due to the nature of micro-machining with
the focused ion beam. The taper angle leads to a question mark on
the strain measurement since the Sneddon’s correction is based
on a straight cylindrical punch and not a tapered pillar. Finite ele-
ment analysis was conducted to evaluate the effect of the taper
angle. The taper angles ranged from 0 deg to 5 deg to match with
that of typical experiments. The pillar geometry is that 3 lm in
height and 0.5 lm in top radius. The size of the substrate is
50 lm� 50 lm.

Figure 7(a) represents the results for an elastic material with
E¼ 50 GPa and �¼ 0.3. Despite the fact that the Sneddon’s cor-
rection is only valid for straight pillars (i.e., 0 deg taper angle),
the effect of taper angle is not significant. As the taper angle is
limited to 5 deg from the practical point of view, the strain error is
within 10� 4. The results for a plastic material (given by Fig. 2(c))
are shown in Fig. 7(b), which is opposite to that of the elastic ma-
terial. Smaller strain errors for tapered plastic pillar can be quali-
tatively understood this way. The Sneddon’s correction was
originally derived to eliminate the sink-in effect for an elastic ma-
terial punching another elastic material. A relatively larger strain
error for plastic materials, even for smaller pressure and 0 deg
taper angle, indicates that the sink-in effect for plastic materials
are not eliminated as much as that for elastic materials. As the

Fig. 5 Substrate size effect on the strain measurement, for (a)
an elastic material with Young’s modulus 50 GPa and Poisson’s
ratio 0.3, and (b) a plastic material with stress-strain curve given
by Fig. 2(c)

Fig. 6 Aspect ratio effect on the strain measurement, for (a) an
elastic material with Young’s modulus 50 GPa and Poisson’s ra-
tio 0.3, and (b) a plastic material with stress-strain curve given
by Fig. 2(c)
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taper angle increases, the base radius of the pillar rbase increases,
which inhibits the sink-in effect and explains the decreasing trend
of the strain errors shown in Fig. 7(b).

The studies in this section conclude that the Sneddon’s correc-
tion works well for pillars with low or high aspect ratios and with
or without taper angels, no matter whether the materials are elastic
or plastic.

4 Measurement of Pillar Stress

The stress calculation in the micro-compression test is based on
the assumption of uniform stress state in the pillar, which is also
one of the advantages of micro-compression test compared with
micro-indentation where a complex stress state is involved. The
test is load-controlled, i.e., the pressure applied on top of the in-
denter p is prescribed. Then the stress can be calculated as

r ¼ r2
indenter

r2
top

p (12)

This section will evaluate the accuracy of this stress calculation.

4.1 Taper Angle Effect. As mentioned above, a taper angle
exists for most micro-pillars, which causes the constitutive

relation inaccurate and deviating from the real one. Figure 8(a)
compares the stress field of two pillars, a straight one (h ¼ 0 deg)
and a tapered one (h ¼ 5 deg). The material is elastic with E¼ 50
GPa and �¼ 0.3; the pillar geometry is 3 lm in height and 0.5 lm
in top radius; the substrate size is 50 lm� 50 lm. A 30 MPa pres-
sure is applied on top of the indenter, and the contour shows typi-
cal stress fields for a perfectly straight pillar and a tapered pillar.
The stress state in the straight pillar (left panel) is fairly uniform
so that Eq. (12) can be applied. However, for the tapered pillar
(right panel), the stress is very nonuniform. Thus, we need to de-
velop a means to calculate the pillar stress for tapered pillars to
reflect the nonuniformity of the pillar stress.

Among many different ways to definite the average stress, the
followings ones are very straightforward. The first one is to use
the average cross sectional area of the pillar, given by

r 1ð Þ ¼ r2
indenter

1

2
r2

top þ r2
base

� � p (13)

the second one is to use the average pillar radius, given by

r 2ð Þ ¼ r2
indenter

rtop þ rbase

2

� �2
p (14)

and the third one is to use the average stress at the top and bottom
surface, given by

r 3ð Þ ¼ 1

2

 
r2

indenter

r2
top

þ r2
indenter

r2
base

!
p (15)

These three means of calculating pillar stress all degenerate to Eq.
(12) when the pillar is straight. We must admit that all these defi-
nitions are just geometric rather than physical since we try to find
an empirical means to average out nonuniformly distributed stress
field (as shown in Fig. 8(a)). Finite element analyses are con-
ducted to evaluate these different stress measurements. The pillar
geometry is 3 lm in height and 0.5 lm in top radius; the substrate
size is 50 lm� 50 lm. A 600 MPa pressure is applied on top of
the indenter. Two extreme cases, pillars with 0 deg to 5 deg taper
angles are studied.

Firstly, an elastic pillar is studied. The input material parame-
ters are E¼ 50 GPa and �¼ 0.3. The material property of interest
is the Young’s modulus that can be extracted from the finite ele-
ment analysis via

EFEM ¼
r ið Þ

eSneddon
pillar

; i ¼ 1; 2; 3 (16)

Here the pillar strain based on Sneddon’s correction (Eq. (7)) is
used as this strain is the one that can be obtained from the experi-
ment. In other words, Eq. (16) expressed a measurable Young’s
modulus from experiments. Figure 8(b) shows that the measure-
able Young’s moduli are higher than the input modulus (50 GPa)
when the taper angle is present. Even for a straight pillar (0 deg
taper angle), the slight nonuniformity of the pillar stress (left panel
of Fig. 8(a)) makes the measureable Young’s modulus a bit off
from the input. Here we must point out that since the stress state is
nonuniform so that the measured stress-strain curve is not the
direct constitutive relation and thus its slope has to be carefully
evaluated in order to obtain the Young’s modulus. Therefore, the
micro-compression test cannot be accurately applied to measure
the Young’s modulus.

We also studied a plastic pillar. The input stress-strain curve is
given by Fig. 2(c) and is represented as black squares in Fig. 8(c).
When taper angle is 0 deg, finite element analysis can reproduce
the input stress-strain curve. When the taper angle is 5 deg, the

Fig. 7 Taper angle on the strain measurement, for (a) an elastic
material with Young’s modulus 50 GPa and Poisson’s ratio
0.3, and (b) a plastic material with stress-strain curve given by
Fig. 2(c)
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stress defined by Eq. (15), i.e., averaging stresses at the top and
bottom surface of the pillar, gives the most accurate result when
the strain is less than 0.4% for the Sn-Ag modeled. As the strain
increases, the stress given by Eq. (15) also starts to deviate from
the input stress-strain curve. This study shows that the stress
defined by Eq. (15), to some extent, has a certain level of accu-
racy. Figure 8(d) gives the measured stresses using the averaging
based on Eq. (15), for pillars with taper angles from 1 deg to
5 deg. It clearly shows that the taper angles make the stress mea-
surement less accurate.

4.2 Aspect Ratio Effect. Another concern is about how the
aspect ratio of the pillar affects the accuracy of stress measurement.
In the following finite element analysis, the pillars with aspect
ratios of 2, 3, and 4, and top radius of 0.5 lm on a 50 lm� 50 lm
substrate are used. The plastic material given by Fig. 2(c) is used.
Since the aspect ratio effect is coupled with the angle effect, 0 deg
and 5 deg taper angles are also employed in the following analysis.
Equation (15) is used for the stress measurement. As Fig. 9 shows,
the aspect ratio generally makes the stress measurement less accu-
rate. The aspect ratio effect is relatively minor for pillars with 0 deg
taper angle, and is enlarged for tapered pillars. In fact, the aspect ra-
tio and taper angle have one common effect on stress measurement,
namely, the larger they are the less accurate the measured stress.

Fig. 8 (a) Contours of pillar stress for a straight pillar (h ¼ 0 deg) and a tapered one (h ¼ 5 deg). The material is elastic,
E 5 50 GPa and m 5 0.3; the pillar geometry is 3 lm in height and 0.5 lm in top radius. The substrate size is 50 lm 3 50 lm
(not completely shown). (b) Taper angle effect of an elastic pillar on measuring the Young’s modulus. (c) Evaluation of dif-
ferent stress measurement for plastic pillars with different taper angles. (d) Taper angle effect of stress measurement on
plastic pillars using Eq. (15). Black square points are stress-strain input from Fig. 2(c).

Fig. 9 Aspect ratio effect of stress measurement on plastic pil-
lar using Eq. (15). Black square points are stress-strain input
from Fig. 2(c).
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The reason is related to the radii of the pillars. Both aspect ratio and
taper angle contribute to the difference in the pillar top and bottom
radii, which causes the inhomogeneous stress state and thus less
accurate stress measurement.

5 Concluding Remarks

In this paper, we systematically investigate the stress/strain
measurement in the micro-compression test to evaluate the capa-
bility of using this test to probe the mechanical properties of both
elastic and plastic materials. Regarding the strain measurement,
the compliance from the substrate and indenter can be pretty accu-
rately considered by the Sneddon’s correction for both elastic and
plastic materials. This accuracy does not strongly depend on the
shape of the pillar and the size of the substrate. Thus the micro-
compression test provides a robust method to measure the strain
with quite high accuracy. For the stress measurement, a straight
pillar with a 0 deg taper angle is ideal since it can accurately mea-
sure the stress. However, for pillars with taper angles, the stress
state is not uniform, which is contradictory to the original motiva-
tion of using micro-compression test rather than micro-
indentation. By defining an empirical means to average out the
nonuniform stresses, one can reach pretty accurate stress measure-
ment at certain level of strain.

Overall, the micro-compression test can provide an alternative
way to accurately measure strain, and to some extent, stress. There-
fore, this test can be used to measure some strain related quantities,
such as strain to failure, or the stress-strain relations for plastic
materials. Since the pillars with 0 deg taper angles have advantages
on both strain and stress measurement, the development of novel
fabrication technical to remove the taper angle is desired.

The micro-pillar compression can also be used to probe the size
effect. In our experiments that motive this study, we did not
observe pronounced size effect. However, some other researchers
[11] do observe size effect for the micro-pillars with much smaller
size (usually less than 1 lm).
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